Chapter 1: Computer Systems

PRESENTED BY SURAJIT NATH

Computer Systems

• We first need to explore the fundamentals of computer processing

• Chapter 1 focuses on:

- components of a computer
- how those components interact
- how computers store and manipulate information
- computer networks
- the Internet and the World-Wide Web
- programming and programming languages
- graphic systems

Hardware and Software

• Hardware

- the physical, tangible parts of a computer
- keyboard, monitor, wires, chips, data

• Software

- programs and data
- a *program* is a series of instructions
- A computer requires both hardware and software
- Each is essentially useless without the other

CPU and Main Memory

Secondary Memory Devices

Secondary memory devices provide long-term storage

> Hard disks Floppy disks ZIP disks Writable CDs Tapes

Input / Output Devices

Software Categories

- Operating System
 - controls all machine activities
 - provides the user interface to the computer
 - manages resources such as the CPU and memory
 - Windows 98, Windows NT, Unix, Linux, Mac OS
- Application program
 - generic term for any other kind of software
 - word processors, missile control systems, games
- Most operating systems and application programs have a graphical user interface (GUI)

Analog vs. Digital

• There are two basic ways to store and manage data:

• Analog

- continuous, in direct proportion to the data represented
- music on a record album a needle rides on ridges in the grooves that are directly proportional to the voltage sent to the speaker

• Digital

- the information is broken down into pieces, and each piece is represented separately
- music on a compact disc the disc stores numbers representing specific voltage levels sampled at various points

Digital Information

Computers store all information digitally:

- numbers
- text
- graphics and images
- audio
- video
- program instructions

• In some way, all information is *digitized* - broken down into pieces and represented as numbers

Representing Text Digitally

- For example, every character is stored as a number, including spaces, digits, and punctuation
- Corresponding upper and lower case letters are separate characters

Hi, Heathe

72 105 44 32 72 101 97 116 104 101 114 46

Binary Numbers

- Once information is digitized, it is represented and stored in memory using the *binary number system*
- A single binary digit (0 or 1) is called a *bit*
- Devices that store and move information are cheaper and more reliable if they only have to represent two states
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0)
 - **Combinations of bits are used to store values**

Bit Combinations

<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	
<u>bit</u>	<u>bits</u>	<u>hits</u>	000 <u>bits</u> 100	
1	0	0	0	0
	0	00	000	100
	1	1	1	1
	1	01	001	101
	0	0	0	0
	1	01	001	101
	1	1	1	1
		10	010	110
Each add	litional bit d	oubles the nu	umber of p	ossible
combina	tions	10	010	110
		1	1	1
		11	011	111
		Λ	0	

12

Bit Combinations

- Each combination can represent a particular item
- There are 2^N combinations of N bits
- Therefore, N bits are needed to represent 2^N unique items

How many items can be represented by

1 bit	$2^1 = 2$
?	items
2 bits	items 2 ³ = 8
?	items 2 ⁴ = 16
3 bits	items 2 ⁵ = 32
?	items

4 bits

A Computer Specification

• Consider the following specification for a personal computer:

- 600 MHz Pentium III Processor
- 256 MB RAM
- 16 GB Hard Disk
- 24x speed CD ROM Drive
- 17" Multimedia Video Display with 1280 x 1024 resolution
- 56 KB Modem

What does it all mean?

Memory

	0
	•
927	
8	
927	
9	
928	
0	
928	
1	
928	
2	0
928	0
3	
928	

 \mathbf{O}

Main memory is divided into many memory locations (or *cells*)

Each memory cell has a numeric *address*, which uniquely identifies it

Storing Information

Each memory cell stores a set number of bits (usually 8 bits, or one *byte*)

Large values are stored in consecutive memory locations

Storage Capacity

• Every memory device has a *storage capacity*, indicating the number of bytes it can hold

• Capacities are expressed in various units:

<u>Unit</u> Symbol Number of Bytes $KB2^{10} = 1024$ kilobyt e **MB** 2^{20} (over 1 million) megaby **GB2**³⁰ (over 1 billion) te **TB2**⁴⁰ (over 1 trillion) gigabyt e terabyt e

Memory

- Main memory is *volatile* stored information is lost if the electric power is removed
- Secondary memory devices are nonvolatile
- Main memory and disks are *direct access* devices
 information can be reached directly
- The terms direct access and *random access* are often used interchangeably
- A magnetic tape is a *sequential access* device since its data is arranged in a linear order - you must get by the intervening data in order to access other information

RAM vs. ROM

- RAM Random Access Memory (direct access)
- ROM Read-Only Memory
- The terms RAM and main memory are basically interchangeable
- ROM could be a set of memory chips, or a separate device, such as a CD ROM
- Both RAM and ROM are random (direct) access devices!
- RAM should probably be called Read-Write Memory

The Central Processing Unit

• A CPU is also called a *microprocessor*

• It continuously follows the *fetch-decode-execute cycle*:

The Central Processing Unit (CPU)

• The CPU contains:

The Central Processing Unit

- The speed of a CPU is controlled by the system clock
- The system clock generates an electronic pulse at regular intervals
- The pulses coordinate the activities of the CPU
- The speed is measured in *megahertz* (MHz)

Monitor

- The size of a monitor (17") is measured diagonally, like a television screen
- Most monitors these days have *multimedia* capabilities: text, graphics, video, etc.
- A monitor has a certain maximum *resolution* , indicating the number of picture elements, called *pixels*, that it can display (such as 1280 by 1024)
- High resolution (more pixels) produces sharper pictures

Modem

- Data transfer devices allow information to be sent and received between computers
- Many computers include a *modem*, which allows information to be moved across a telephone line
- A data transfer device has a maximum *data transfer rate*
- A modem, for instance, may have a data transfer rate of 56,000 *bits per second* (bps)

Networks

- A *network* is two or more computers that are connected so that data and resources can be shared
- Most computers are connected to some kind of network
- Each computer has its own *network address*, which uniquely identifies it among the others
- A *file server* is a network computer dedicated to storing programs and data that are shared among network users

Network Connections

- Each computer in a network could be directly connected to each other computer in the network
- These are called *point-to-point* connections

Adding a computer requires a new communication line for each computer already in the network

This technique is not feasible for more than a few close machines

Network Connections

- Most modern networks share a single communication line
- Adding a new computer to the network is relatively easy

Network traffic must take turns using the line, which introduces delays Often information is broken down in parts, called *packets*, which are sent to the receiving machine then reassembled

Local-Area Networks

A Local-Area Network (LAN) covers a small distance and a small number of computers

A LAN often connects the machines in a single room or building

Wide-Area Networks

A Wide-Area Network (WAN) connects two or more LANs, often over long distances

> A LAN is usually owned by one organization, but a WAN often connects different groups in different countries

LA

N

LA

N

The Internet

- The *Internet* is a WAN which spans the entire planet
- The word Internet comes from the term internetworking, which implies communication among networks
- It started as a United States government project, sponsored by the Advanced Research Projects Agency (ARPA), and was originally called the ARPANET
 - The Internet grew quickly throughout the 1980s and 90s

TCP/IP 💿

- A protocol is a set of rules that determine how things communicate with each other
- The software which manages Internet communication follows a suite of protocols called *TCP/IP*
- The *Internet Protocol* (IP) determines the format of the information as it is transferred
- The *Transmission Control Protocol* (TCP) dictates how messages are reassembled and handles lost information

IP and Internet Addresses

- Each computer on the Internet has a unique *IP address*, such as: 204.192.116.2
- Most computers also have a unique Internet name, which is also referred to as an *Internet address*:

renoir.villanova.edu
kant.breakaway.com

- The first part indicates a particular computer (renoir)
- The rest is the *domain name*, indicating the organization (villanova.edu)

Domain Names

• The last section (the suffix) of each domain name usually indicates the type of organization:

edu - educational com institutiencial org businquesofit net ongetwioerkionsed organization

Sometimes the suffix indicates the UNITED au Kingdom ca Australia se Canada Sweden

New suffix categories are being considered

Domain Names

• A domain name can have several parts

- Unique domain names mean that multiple sites can have individual computers with the same local name
- When used, an Internet address is translated to an IP address by software called the *Domain Name System* (DNS)
- There is <u>no</u> one-to-one correspondence between the sections of an IP address and the sections of an Internet address

The World-Wide Web

- The *World-Wide Web* allows many different types of information to be accessed using a common interface
- A *browser* is a program which accesses and presents information
 - text, graphics, sound, audio, video, executable programs
- A Web document usually contains *links* to other Web documents, creating a *hypermedia* environment
- The term Web comes from the fact that information is not organized in a linear fashion

The World-Wide Web

• Web documents are often defined using the HyperText Markup Language (HTML)

• Information on the Web is found using a *Uniform Resource Locator* (URL):

http://www.lycos.com
http://www.villanova.edu/webinfo/domains.html
ftp://java.sun.com/applets/animation.zip

• A URL indicates a protocol (http), a domain, and possibly specific documents